Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Biol Trace Elem Res ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676876

RESUMEN

The presence of arsenic (As) and fluoride (F-) in drinking water is of concern due to the enormous number of individuals exposed to this condition worldwide. Studies in cultured cells and animal models have shown that As- or F-induced hepatotoxicity is primarily associated with redox disturbance and altered mitochondrial homeostasis. To explore the hepatotoxic effects of chronic combined exposure to As and F- in drinking water, pregnant CD-1 mice were exposed to 2 mg/L As (sodium arsenite) and/or 25 mg/L F- (sodium fluoride). The male offspring continued the exposure treatment up to 30 (P30) or 90 (P90) postnatal days. GSH levels, cysteine synthesis enzyme activities, and cysteine transporter levels were investigated in liver homogenates, as well as the expression of biomarkers of ferroptosis and mitochondrial biogenesis-related proteins. Serum transaminase levels and Hematoxylin-Eosin and Masson trichrome-stained liver tissue slices were examined. Combined exposure at P30 significantly reduced GSH levels and the mitochondrial transcription factor A (TFAM) expression while increasing lipid peroxidation, free Fe 2+, p53 expression, and serum ALT activity. At P90, the upregulation of cysteine uptake and synthesis was associated with a recovery of GSH levels. Nevertheless, the downregulation of TFAM continued and was now associated with a downstream inhibition of the expression of MT-CO2 and reduced levels of mtDNA and fibrotic liver damage. Our experimental approach using human-relevant doses gives evidence of the increased risk for early liver damage associated with elevated levels of As and F- in the diet during intrauterine and postnatal period.

2.
Environ Res ; 241: 117631, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972809

RESUMEN

BACKGROUND: DNA damage caused by exposure to metal mixtures and the potential modulating role of genes involved in DNA repair and the antioxidant response have not been evaluated in newborns. AIM: The aim was to evaluate the association between prenatal exposure to metal mixtures and DNA repair capacity (DRC) in newborns from the Metropolitan Area of Mexico City (MAMC), a heavily polluted area, and the impact of variants in genes involved in DNA repair and the antioxidant response on this association. METHODS: We analyzed cord blood samples obtained at delivery from 125 healthy newborns from the MAMC. Twenty-four elements were determined by inductively coupled plasma mass spectrometry (ICP‒MS), but only 12 (Cu, I, Se, Zn, As, Ba, Cs, Mn, Sb, Sr, Pb, and Ti) were quantified in most samples. DRC was assessed by the challenge-comet assay, and OGG1, PARP1, and NFE2L2 genotyping was performed with TaqMan probes. Metal mixtures were identified and analyzed using principal component analysis (PCA) and weighted quantile sum (WQS) regression. Independent adjusted linear regression models were used to evaluate the associations. RESULTS: A null DRC was observed in 46% of newborns. The metals with the highest concentrations were Mn, Sr, Ti, and Pb. Essential elements showed normal levels. Only the mixture characterized by increased As, Cs, Cu, Se, and Zn levels was inversely associated with DRC. As was the principal contributor (37.8%) in the negative direction in the DRC followed by Ba and Sb, according to the WQS regression. Newborns carrying of the derived (G) allele of the PARP1 rs1136410 variant showed decreased DRC by exposure to some potentially toxic metals (PTMs) (As, Cs, and Ba). CONCLUSION: Prenatal exposure to metal mixtures negatively affected DRC in newborns, and the PARP1 rs1136410 variant had a modulating role in this association.


Asunto(s)
Antioxidantes , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Recién Nacido , Humanos , Plomo , Daño del ADN , Reparación del ADN , Poli(ADP-Ribosa) Polimerasa-1/genética
3.
Biol Trace Elem Res ; 202(4): 1594-1602, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37450204

RESUMEN

Inorganic arsenic (iAs) and fluoride (iF) are ubiquitous elements whose coexistence is frequent in several regions of the world due to the natural contamination of water sources destined for human consumption. It has been reported that coexposure to these two elements in water can cause toxic effects on health, which are controversial since antagonistic and synergistic effects have been reported. However, there is little information on the possible toxicological interaction between concurrent exposure to iAs and iF on the iAs metabolism profile.The goal of this study was to determine the effect of iF exposure on iAs methylation patterns in the urine and the tissues of female mice of the C57BL/6 strain, which were divided into four groups and exposed daily for 10 days through drinking water as follows: purified water (control); arsenite 1 mg/L, fluoride 50 mg/L and arsenite & fluoride 1:50 mg/L.To characterize the iAs methylation pattern in concomitant iF exposure, iAs and its methylated metabolites (MAs and DMAs) were quantified in the tissues and the urine of mice was exposed to iAs alone or in combination. Our results showed a statistically significant decrease in the arsenic species concentrations and altered relative proportions of arsenic species in tissues and urine in the As-iF coexposure group compared to the iAs-exposed group. These findings show that iF exposure decreases arsenic disposition and alters methylation capacity.Nevertheless, additional studies are required to elucidate the mechanisms involved in the iAs-iF interaction through iF exposure affecting iAs disposition and metabolism.


Asunto(s)
Arsénico , Arsenicales , Arsenitos , Humanos , Ratones , Femenino , Animales , Arsénico/toxicidad , Arsénico/metabolismo , Arsenitos/toxicidad , Fluoruros/toxicidad , Ratones Endogámicos C57BL , Metaboloma , Agua
4.
Biol Trace Elem Res ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882978

RESUMEN

Inorganic fluoride is a geogenic and anthropogenic contaminant widely distributed in the environment and commonly identified in contaminated groundwater. There is limited information on the effect of fluoride exposure on pregnancy. The aim of this study was to evaluate possible placental alterations of fluoride exposure in a rat model simulating preconception and pregnancy exposure conditions in endemic areas. Fluoride exposure was administered orally to foetuses of dams exposed to 2.5 and 5 mg fluoride/kg/d. Foetal weight, height, foetal/placental weight ratio, placental zone thickness, levels of malondialdehyde (MDA) and vascular endothelial growth factor-A (VEGF-A) and vascular density in placental tissue were evaluated. The results showed a nonlinear relationship between these outcomes and the dose of fluoride exposure. In addition, a significant increase in the fluoride concentration in placental tissue was observed. The group that was exposed to 2.5 mg fluoride/kg/d had a greater increase in both MDA levels and VEGF-A levels than the higher dose group. A significant increase in the thickness of the placental zones and a decrease in the vascular density of the labyrinth zone area were also observed in the fluoride-exposed groups. In conclusion, the data obtained demonstrate that fluoride exposure results in morpho-structural alterations in the placenta and that non-monotonic changes in MDA, VEGF-A levels and placental foetal weight ratio were at environmentally relevant concentrations.

5.
Arch Toxicol ; 97(9): 2371-2383, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37482551

RESUMEN

Exposure to toxic elements in drinking water, such as arsenic (As) and fluoride (F), starts at gestation and has been associated with memory and learning deficits in children. Studies in which rodents underwent mechanistic single exposure to As or F showed that the neurotoxic effects are associated with their capacity to disrupt redox balance, mainly by diminishing glutathione (GSH) levels, altering glutamate disposal, and altering glutamate receptor expression, which disrupts synaptic transmission. Elevated levels of As and F are common in groundwater worldwide. To explore the neurotoxicity of chronic exposure to As and F in drinking water, pregnant CD-1 mice were exposed to 2 mg/L As (sodium arsenite) and 25 mg/L F (sodium fluoride) alone or in combination. The male litter continued to receive exposure up to 30 or 90 days after birth. The effects of chronic exposure on GSH levels, transsulfuration pathway enzymatic activity, expression of cysteine/cystine transporters, glutamate transporters, and ionotropic glutamate receptor subunits as well as behavioral performance in the object recognition memory task were assessed. Combined exposure resulted in a significant reduction in GSH levels in the cortex and hippocampus at different times, decreased transsulfuration pathway enzyme activity, as well as diminished xCT protein expression. Altered glutamate receptor expression in the cortex and hippocampus and decreased transaminase enzyme activity were observed. These molecular alterations were associated with memory impairment in the object recognition task, which relies on these brain regions.


Asunto(s)
Arsénico , Agua Potable , Embarazo , Femenino , Ratones , Animales , Masculino , Fluoruros/toxicidad , Ácido Glutámico/metabolismo , Arsénico/toxicidad , Receptores de Glutamato/metabolismo , Oxidación-Reducción , Encéfalo/metabolismo , Trastornos de la Memoria/inducido químicamente , Glutatión/metabolismo
6.
Biol Trace Elem Res ; 201(5): 2125-2150, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35713810

RESUMEN

In recent years, the background level of environmental pollutants, including metals, has increased. Pollutant exposure during the earliest stages of life may determine chronic disease susceptibility in adulthood because of genetic or epigenetic changes. The objective of this review was to identify the association between prenatal and early postnatal exposure to potentially toxic metals (PTMs) and their adverse effects on the genetic material of offspring. A systematic review was carried out following the Cochrane methodology in four databases: PubMed, Scopus, Web of Science, and the Cochrane Library. Eligible papers were those conducted in humans and published in English between 2010/01/01 and 2021/04/30. A total of 57 articles were included, most of which evaluated prenatal exposure. Most commonly evaluated PTMs were As, Cd, and Pb. Main adverse effects on the genetic material of newborns associated with PTM prenatal exposure were alterations in telomere length, gene or protein expression, mitochondrial DNA content, metabolomics, DNA damage, and epigenetic modifications. Many of these effects were sex-specific, being predominant in boys. One article reported a synergistic interaction between As and Hg, and two articles observed antagonistic interactions between PTMs and essential metals, such as Cu, Se, and Zn. The findings in this review highlight that the problem of PTM exposure persists, affecting the most susceptible populations, such as newborns. Some of these associations were observed at low concentrations of PTMs. Most of the studies have focused on single exposures; however, three interactions between essential and nonessential metals were observed, highlighting that metal mixtures need more attention.


Asunto(s)
Contaminantes Ambientales , Mercurio , Metales Pesados , Efectos Tardíos de la Exposición Prenatal , Masculino , Embarazo , Femenino , Recién Nacido , Humanos , Efectos Tardíos de la Exposición Prenatal/genética , Metales/toxicidad , Intoxicación por Metales Pesados , Contaminantes Ambientales/toxicidad , Metales Pesados/toxicidad , Metales Pesados/metabolismo
7.
Toxicol Appl Pharmacol ; 426: 115651, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34273409

RESUMEN

BACKGROUND: Some studies in animal models and humans suggest that exposure to lead is associated with hearing loss. Lead can reach the inner ear through the blood circulation; evidence suggests that lead could accumulate in the inner ear, causing inner ear damage. AIM: To evaluate prestin and otolin-1 protein levels and their relationship with an increased hearing threshold in participants exposed to lead. METHODS: We conducted a cross-sectional study with 315 participants from Tlaxcala, Mexico. Blood lead levels (BPb) were evaluated by graphite furnace atomic absorption spectrometry. Serum prestin and otolin-1 were quantified using ELISA. Auditory function at frequencies of 0.125 to 8 kHz was evaluated in a soundproof chamber. RESULTS: Participants were classified according to BPb: group I (<10 µg/dL) had a median BPb of 6 µg/dL and prestin levels of 11.06 ng/mL. While participants in group II (≥10 µg/dL) had a median of BPb 20.7 µg/dL (p < 0.05) and prestin levels of 0.15 ng/mL (p < 0.001). Participants in both groups showed a normal hearing. Otolin-1 levels were higher for participants with normal hearing and lower for participants with hearing loss in both groups, p > 0.05. Multiple linear regression models predict an average decrease of 0.17 to 0.26 ng/mL in prestin levels per decibel increase for the frequencies evaluated. CONCLUSIONS: Participants with high BPb showed an increase in hearing threshold, and prestin levels decreased proportionally to the hearing threshold increase. This is the first study to evaluate prestin as a potential biomarker for hearing damage, evaluated by audiometry, in participants with lead exposure.


Asunto(s)
Contaminantes Ambientales/toxicidad , Proteínas de la Matriz Extracelular/sangre , Pérdida Auditiva/inducido químicamente , Plomo/toxicidad , Transportadores de Sulfato/sangre , Adulto , Biomarcadores/sangre , Estudios Transversales , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/sangre , Femenino , Pérdida Auditiva/sangre , Pérdida Auditiva/epidemiología , Humanos , Plomo/sangre , Masculino , México/epidemiología , Persona de Mediana Edad
8.
Toxicol Appl Pharmacol ; 403: 115164, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32738329

RESUMEN

BACKGROUND: Arsenic exposure is associated with cardiovascular risk in adults; however, few epidemiologic studies have evaluated biomarkers of cardiovascular risk in children who are environmentally exposed to arsenic. OBJECTIVE: The aim of this study was to assess the associations between urinary arsenic, plasma natriuretic peptides and echocardiographic parameters in Mexican children exposed to arsenic through the drinking water. METHODS: We conducted a cross-sectional study with 192 children (3-8 years old) from Zimapan, Hidalgo, Mexico. B-type natriuretic peptide (BNP), NT-proBNP and atrial natriuretic peptide (ANP) were measured by ELISA, urinary arsenic concentration (UAs) were measured via by hydride generation-cryotrapping-atomic absorption spectrometry, and cardiac parameters were measured by echocardiography. RESULTS: The median plasma concentrations of ANP, BNP and NT-proBNP were 36.9 ng/mL, 49.7 pg/mL, and 226.1 pg/mL, respectively. Using multivariable models, a dose-response relationship was observed between BNP concentrations and UAs tertiles (<47 ng/mL: reference, 47-72 ng/mL: 48.7 pg/mL, >72 ng/mL: 52.2 pg/mL, P-trend = 0.020). BNP concentrations also increased with increasing U-tAs as continuous variables (0.43 pg/mL increase per 1 ng/mL increase of U-tAs; P-Value = 0.008). Additionally, BNP was positively associated with arsenic methylated metabolites (U-MAs and U-DMAs). On the other hand, BNP was inversely related to relative wall thickness (RWT). No associations were found for other cardiac parameters. Finally, neither ANP nor NT-proBNP were significantly related to arsenic exposure or echocardiographic parameters. CONCLUSIONS: In this study, we showed associations between plasma BNP and arsenic exposure. Our results support the importance of reducing childhood arsenic exposure, which may have cardiovascular effects early in life.


Asunto(s)
Arsénico/toxicidad , Corazón/efectos de los fármacos , Corazón/diagnóstico por imagen , Péptidos Natriuréticos/metabolismo , Niño , Preescolar , Estudios Transversales , Ecocardiografía , Exposición a Riesgos Ambientales , Contaminantes Ambientales/toxicidad , Femenino , Humanos , Masculino , México
9.
Lung ; 197(5): 641-649, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31267149

RESUMEN

PURPOSE: Malignant pleural mesothelioma (MPM) is a highly lethal cancer caused by exposure to asbestos. Currently, the diagnosis is a challenge, carried out by means of invasive methods of limited sensitivity. This is a case-control study to evaluate the individual and combined performance of minimally invasive biomarkers for the diagnosis of MPM. METHOD: A study of 166 incident cases of MPM and 378 population controls of Mestizo-Mexican ethnicity was conducted. Mesothelin, calretinin, and megakaryocyte potentiating factor (MPF) were quantified in plasma by ELISA. The samples were collected from 2011 to 2016. RESULTS: Based on ROC analysis and a preset specificity of 95%, the combination of the three biomarkers reached an AUC of 0.944 and a sensitivity of 82% in men. In women, an AUC of 0.937 and a sensitivity of 87% were reached. In nonconditional logistic regression models, the adjusted ORs in men were 7.92 (95% CI 3.02-20.78) for mesothelin, 20.44 (95% CI 8.90-46.94) for calretinin, and 4.37 (95% CI 1.60-11.94) for MPF. The ORs for women were 28.89 (95% CI 7.32-113.99), 17.89 (95% CI 3.93-81.49), and 2.77 (95% CI 0.47-16.21), respectively. CONCLUSIONS: To our knowledge, this is the first study evaluating a combination of mesothelin, calretinin, and MPF, and demonstrating a sex effect for calretinin. The biomarker panel showed a good performance in a Mestizo-Mexican population, with high sensitivity and specificity for the diagnosis of MPM.


Asunto(s)
Biomarcadores de Tumor/sangre , Calbindina 2/sangre , Proteínas Ligadas a GPI/sangre , Neoplasias Pulmonares/sangre , Mesotelioma/sangre , Neoplasias Pleurales/sangre , Anciano , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Incidencia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiología , Masculino , Mesotelina , Mesotelioma/diagnóstico , Mesotelioma/epidemiología , Mesotelioma Maligno , México/epidemiología , Persona de Mediana Edad , Neoplasias Pleurales/diagnóstico , Neoplasias Pleurales/epidemiología , Valor Predictivo de las Pruebas , Pronóstico , Medición de Riesgo , Factores de Riesgo , Factores Sexuales
10.
Sci Total Environ ; 684: 621-628, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31158625

RESUMEN

Arsenic (As) and fluoride (F) are two common groundwater toxicants. The toxicity of As is closely related to As metabolism, and several biological and environmental factors have been associated with As modification. However, limited information about the effect of F exposure on the modification of the As metabolism profile has been described. The aim of this study was to assess the interaction effect of AsF coexposure on the As metabolism profile in an adult population environmentally exposed to low-moderate As levels. A cross-sectional study was conducted in 236 adults from three Mexican communities. F and As concentrations were quantified in water samples. The concentrations of urinary F and As species [inorganic arsenic (iAs), monomethylated arsenic (MAs) and dimethylated arsenic (DMAs)] were also determined and used as exposure biomarkers. As species percentages and methylation indices were estimated to evaluate the As methylation profile. Our results showed a relationship between the water and urine concentrations of both contaminants and, a significant correlation between the As and F concentrations in water and urine samples. A statistically significant interaction of F and As exposure on the increase in MAs% (ß = 0.16, p = 0.018) and the decrease in DMAs% (ß = -0.3, p = 0.034), PMI (ß = -0.07, p = 0.052) and SMI (ß = -0.13, p = 0.097) was observed. These findings indicate that drinking water is the main source of AsF coexposure and suggest that F exposure decreases As methylation capacity. However, additional large and prospective studies are required to confirm our findings, and to elucidate the involved mechanisms of interaction and their implications in adverse health effects.


Asunto(s)
Arsénico/metabolismo , Arsenicales/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Fluoruros/efectos adversos , Contaminantes Químicos del Agua/efectos adversos , Adulto , Biomarcadores/análisis , Estudios Transversales , Femenino , Agua Subterránea/química , Humanos , Masculino , Persona de Mediana Edad , Contaminantes Químicos del Agua/metabolismo
11.
J Expo Sci Environ Epidemiol ; 29(5): 718-729, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30728485

RESUMEN

Exposure to inorganic arsenic (iAs) remains a global public health problem. Urinary arsenicals are the current gold-standard for estimating both iAs exposure and iAs metabolism. However, the distribution of these arsenicals may differ between the urine and target organs. Instead, plasma arsenicals may better represent internal dose and capture target organ exposure to arsenicals. Drinking water iAs, plasma and urinary arsenicals were quantified in individuals living in the Zimapan and Lagunera regions of Mexico. The relationship between drinking water iAs and plasma arsenicals was examined using both Spearman correlations and multivariable linear regression models. In addition, the distribution of arsenicals in plasma and urine was examined and the association between plasma and urinary arsenicals was assessed using both Spearman correlations and multivariable linear regression models. Levels of iAs in drinking water were significantly associated with plasma arsenicals in unadjusted and adjusted analyses and the strength of these associations was similar to that of drinking water iAs and urinary arsenicals. These results suggest that plasma arsenicals are reliable biomarkers of iAs exposure via drinking water. However, there were notable differences between the profiles of arsenicals in the plasma and the urine. Key differences between the proportions of arsenicals in plasma and urine may indicate that urine and plasma arsenicals reflect different aspects of iAs toxicokinetics, including metabolism and excretion.


Asunto(s)
Arsenicales/sangre , Exposición a Riesgos Ambientales/análisis , Intoxicación por Arsénico , Biomarcadores/metabolismo , Agua Potable/análisis , Femenino , Humanos , Modelos Lineales , Masculino , México , Toxicocinética
12.
Environ Res ; 169: 220-228, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30471530

RESUMEN

Exposure to inorganic fluoride (F) has been implicated in cardiovascular and kidney dysfunction mainly in adult populations. However, limited epidemiological information from susceptible populations, such as children, is available. In this study we evaluated the relationship of F exposure with some vascular and kidney injury biomarkers in children. A cross-sectional study was conducted in 374 Mexican schoolchildren. Dental fluorosis and F concentrations in the water and urine were evaluated. The glomerular filtration rate (eGFR) and the urinary concentrations of kidney injury molecule 1 (KIM-1) and cystatin-C (uCys-C) were examined to assess kidney injury. The carotid intima media thickness (cIMT) and serum concentrations of vascular adhesion molecule 1 (VCAM-1), intracellular adhesion molecule 1 (ICAM-1), endothelin 1(ET-1) and cystatin-C (sCys-C) were measured to assess vascular alterations. High proportions of children exposed to F were observed (79.7% above 1.2 ppm F in urine) even in the low water F exposure regions, which suggested additional sources of F exposure. In robust multiple linear regression models, urinary F was positively associated with eGFR (ß = 1.3, p = 0.015), uCys-C (ß = -8.5, p = 0.043), VCAM-1 (ß = 111.1, p = 0.019), ICAM-1 (ß = 57, p = 0.032) and cIMT (ß = 0.01, p = 0.032). An inverse association was observed with uCys-C (ß = -8.5, p = 0.043) and sCys-C (ß = -9.6, p = 0.021), and no significant associations with ET-1 (ß = 0.069, p = 0.074) and KIM-1 (ß = 29.1, p = 0.212) were found. Our findings revealed inconclusive results regarding F exposure and kidney injury. However, these results suggest that F exposure is related to early vascular alterations, which may increase the susceptibility of cardiovascular diseases in adult life.


Asunto(s)
Lesión Renal Aguda/metabolismo , Fluoruros/toxicidad , Adulto , Biomarcadores/metabolismo , Grosor Intima-Media Carotídeo , Niño , Estudios Transversales , Humanos , Riñón , México
13.
Environ Int ; 123: 292-300, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30553202

RESUMEN

BACKGROUND: Exposure to inorganic arsenic (iAs) via drinking water is a serious global health threat. Various factors influence susceptibility to iAs-associated health outcomes, including differences in iAs metabolism. Previous studies have shown that obesity is associated with iAs metabolism. It has been hypothesized that this association can be explained by confounding from nutritional factors involved in one-carbon metabolism, such as folate or other B vitamins, whose intake may differ across BMI categories and is known be associated with iAs metabolism. However, no studies have explored whether this association is confounded by nutritional factors. METHODS: We investigated the relationship between body mass index (BMI) and the distribution of urinary arsenic species in a cross-sectional cohort of 1166 adults living in Chihuahua, Mexico from 2008 to 2013. Nutrient intake related to one-carbon metabolism, including folate, vitamin B2, and vitamin B12, was assessed using a food frequency questionnaire developed for Mexican populations. Multivariable linear regression was used to estimate the association between BMI and the distribution of urinary arsenic metabolites. Effect modification by drinking water iAs level and sex was also examined. RESULTS: After adjusting for potential confounders, including age, educational attainment, smoking, alcohol consumption, seafood consumption, water iAs, and sex, BMI was negatively associated with the proportion of urinary inorganic arsenic (%U-iAs) and urinary monomethylated arsenic (%U-MMAs) and positively associated with urinary dimethylated arsenic (%U-DMAs). This relationship was not influenced by additional adjustment for folate, vitamin B2, or vitamin B12 intake. Additionally, there was significant effect modification by both drinking water iAs level and sex. CONCLUSIONS: This study provides further evidence for an association between BMI and arsenic metabolism. However, contrary to previous hypotheses, these results suggest that this association is not confounded by the intake of micronutrients involved in one-carbon metabolism.


Asunto(s)
Arsénico/orina , Índice de Masa Corporal , Carbono/metabolismo , Nutrientes/metabolismo , Adulto , Arsénico/análisis , Estudios de Cohortes , Estudios Transversales , Exposición a Riesgos Ambientales , Femenino , Humanos , Masculino , México , Estado Nutricional , Fumar
14.
Environ Sci Technol ; 52(24): 14487-14495, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30457847

RESUMEN

Arsenic (As) is a toxic metalloid. Inorganic arsenic (iAs) is a form of As commonly found in drinking water and in some foods. Overwhelming evidence suggests that people chronically exposed to iAs are at risk of developing cancer or cardiovascular, neurological, and metabolic diseases. Although the mechanisms underlying iAs-associated illness remain poorly characterized, a growing body of literature raises the possibility that microRNAs (miRNAs), post-transcriptional gene suppressors, may serve as mediators and/or early indicators of the pathologies associated with iAs exposure. To characterize the circulating miRNA profiles of individuals chronically exposed to iAs, samples of plasma were collected from 109 healthy residents of the city of Zimapán and the Lagunera area in Mexico, the regions with historically high exposures to iAs in drinking water. These plasma samples were analyzed for small RNAs using high-throughput sequencing and for iAs and its methylated metabolites. Associations between plasma levels of arsenic species and miRNAs were evaluated. Six circulating miRNAs (miRs-423-5p, -142-5p -2, -423-5p +1, -320c-1, -320c-2, and -454-5p), two of which have been previously linked to cardiovascular disease and diabetes (miRs-423-5p, -454-5p), were found to be significantly correlated with plasma MAs. No miRNAs were associated with plasma iAs or DMAs after correction for multiple testing. These miRNAs may represent mechanistic links between iAs exposure and disease or serve as markers of disease risks associated with this exposure.


Asunto(s)
Arsénico , MicroARN Circulante , Agua Potable , MicroARNs , Humanos , México
15.
Toxicol Appl Pharmacol ; 352: 97-106, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29800643

RESUMEN

Fluoride (F) is a toxicant widely distributed in the environment. Experimental studies have shown kidney toxicity from F exposure. However, co-exposure to arsenic (As) has not been considered, and epidemiological information remains limited. We evaluated the association between F exposure and urinary kidney injury biomarkers and assessed As co-exposure interactions. A cross-sectional study was conducted in 239 adults (18-77 years old) from three communities in Chihuahua, Mexico. Exposure to F was assessed in urine and drinking water, and As in urine samples. We evaluated the urinary concentrations of albumin (ALB), cystatin-C (Cys-C), kidney injury molecule 1 (KIM-1), clusterin (CLU), osteopontin (OPN), and trefoil factor 3 (TFF-3). The estimated glomerular filtration rate (eGFR) was calculated using serum creatinine (Creat) levels. We observed a positive correlation between water and urine F concentrations (ρ = 0.7419, p < 0.0001), with median values of 1.5 mg/L and 2 µg/mL, respectively, suggesting that drinking water was the main source of F exposure. The geometric mean of urinary As was 18.55 ng/mL, approximately 39% of the urine samples had As concentrations above the human biomonitoring value (15 ng/mL). Multiple linear regression models demonstrated a positive association between urinary F and ALB (ß = 0.56, p < 0.001), Cys-C (ß = 0.022, p = 0.001), KIM-1 (ß = 0.048, p = 0.008), OPN (ß = 0.38, p = 0.041), and eGFR (ß = 0.49, p = 0.03); however, CLU (ß = 0.07, p = 0.100) and TFF-3 (ß = 1.14, p = 0.115) did not show significant associations. No interaction with As exposure was observed. In conclusion, F exposure was related to the urinary excretion of early kidney injury biomarkers, supporting the hypothesis of the nephrotoxic role of F exposure.


Asunto(s)
Arsénico/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Fluoruros/efectos adversos , Enfermedades Renales/inducido químicamente , Riñón/efectos de los fármacos , Contaminantes Químicos del Agua/efectos adversos , Adolescente , Adulto , Anciano , Albuminuria/inducido químicamente , Albuminuria/diagnóstico , Albuminuria/orina , Arsénico/orina , Biomarcadores/orina , Clusterina/orina , Estudios Transversales , Cistatina C/orina , Monitoreo del Ambiente/métodos , Femenino , Fluoruros/orina , Tasa de Filtración Glomerular/efectos de los fármacos , Receptor Celular 1 del Virus de la Hepatitis A/análisis , Humanos , Riñón/metabolismo , Riñón/fisiopatología , Enfermedades Renales/diagnóstico , Enfermedades Renales/fisiopatología , Enfermedades Renales/orina , Masculino , México , Persona de Mediana Edad , Osteopontina/orina , Valor Predictivo de las Pruebas , Medición de Riesgo , Factor Trefoil-3/orina , Contaminantes Químicos del Agua/orina , Adulto Joven
16.
Ann Glob Health ; 84(2): 257-273, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30873793

RESUMEN

BACKGROUND: Mexico is included in the list of countries with concurrent arsenic and fluoride contamination in drinking water. Most of the studies have been carried out in the adult population and very few in the child population. Urinary arsenic and urinary fluoride levels have been accepted as good biomarkers of exposure dose. The Biomonitoring Equivalents (BE) values are useful tools for health assessment using human biomonitoring data in relation to the exposure guidance values, but BE information for children is limited. METHODS: We conducted a systematic review of the reported levels of arsenic and fluoride in drinking water, urinary quantification of speciated arsenic (inorganic arsenic and its methylated metabolites), and urinary fluoride levels in child populations. For BE values, urinary arsenic and fluoride concentrations reported in Mexican child populations were revised discussing the influence of factors such as diet, use of dental products, sex, and metabolism. RESULTS: Approximately 0.5 and 6 million Mexican children up to 14 years of age drink water with arsenic levels over 10 µg/L and fluoride over 1.5 mg/L, respectively. Moreover, 40% of localities with arsenic levels higher than 10 µg/L also present concurrent fluoride exposure higher than 1.5 mgF/L. BE values based in urinary arsenic of 15 µg/L and urinary fluoride of 1.2 mg/L for the environmentally exposed child population are suggested. CONCLUSIONS: An actual risk map of Mexican children exposed to high levels of arsenic, fluoride, and both arsenic and fluoride in drinking water was generated. Mexican normativity for maximum contaminant level for arsenic and fluoride in drinking water should be adjusted and enforced to preserve health. BE should be used in child populations to investigate exposure.


Asunto(s)
Arsénico/orina , Agua Potable , Fluoruros/orina , Calidad del Agua/normas , Niño , Agua Potable/efectos adversos , Agua Potable/análisis , Agua Potable/química , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/prevención & control , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/normas , Humanos , México/epidemiología , Medición de Riesgo , Contaminantes Químicos del Agua/orina
17.
Toxicol In Vitro ; 42: 281-286, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28502835

RESUMEN

Inorganic arsenic (iAs) exposure is related to cardiovascular disease, which is characterized by endothelial dysfunction and nitric oxide (NO) depletion. The mechanisms underlying NO depletion as related to iAs exposure are not fully understood. The endogenous inhibitor of nitric oxide synthase, asymmetric dimethylarginine (ADMA), might be a molecular target of iAs. ADMA concentrations are regulated by proteins involved in its synthesis (arginine methyl transferase 1 [PRMT-1]) and degradation (dimethylarginine dimethylaminohydrolase [DDAH]). Both, ADMA and NO are susceptible to oxidative stress. We aimed to determine the ADMA/DDAH/NO pathway in human vein endothelial cells (HUVEC-CS) exposed to arsenite. We exposed HUVEC-CS cells to 1, 2.5 and 5µM of arsenite for 24h. We proved that arsenite at 5µM was able to decrease NO levels with an associated increase in ADMA and depletion of l-arginine in HUVEC-CS cells. We also found a decrease in DDAH-1 protein expression with 5µM of arsenite compared to the control group. However, we did not observe significant differences in PRMT-1 protein expression at any of the concentrations of arsenite employed. Finally, arsenite (2.5 and 5µM) increased NADPH oxidase 4 protein levels compared with the control group. We conclude that ADMA, l-arginine and DDAH are involved in NO depletion produced by arsenite, and that the mechanism is related to oxidative stress.


Asunto(s)
Amidohidrolasas/metabolismo , Arginina/análogos & derivados , Arsenitos/toxicidad , Óxido Nítrico/metabolismo , Arginina/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , NADPH Oxidasa 4/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo
18.
Toxicol Sci ; 153(1): 112-23, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27370415

RESUMEN

Variants in AS3MT, the gene encoding arsenic (+3 oxidation state) methyltranserase, have been shown to influence patterns of inorganic arsenic (iAs) metabolism. Several studies have suggested that capacity to metabolize iAs may vary depending on levels of iAs exposure. However, it is not known whether the influence of variants in AS3MT on iAs metabolism also vary by level of exposure. We investigated, in a population of Mexican adults exposed to drinking water As, whether associations between 7 candidate variants in AS3MT and urinary iAs metabolites were consistent with prior studies, and whether these associations varied depending on the level of exposure. Overall, associations between urinary iAs metabolites and AS3MT variants were consistent with the literature. Referent genotypes, defined as the genotype previously associated with a higher percentage of urinary dimethylated As (DMAs%), were associated with significant increases in the DMAs% and ratio of DMAs to monomethylated As (MAs), and significant reductions in MAs% and iAs%. For 3 variants, associations between genotypes and iAs metabolism were significantly stronger among subjects exposed to water As >50 versus ≤50 ppb (water As X genotype interaction P < .05). In contrast, for 1 variant (rs17881215), associations were significantly stronger at exposures ≤50 ppb. Results suggest that iAs exposure may influence the extent to which several AS3MT variants affect iAs metabolism. The variants most strongly associated with iAs metabolism-and perhaps with susceptibility to iAs-associated disease-may vary in settings with exposure level.


Asunto(s)
Arsénico/toxicidad , Agua Potable/química , Exposición a Riesgos Ambientales , Metiltransferasas/metabolismo , Adulto , Arsénico/análisis , Arsénico/orina , Estudios Transversales , Femenino , Genotipo , Humanos , Límite de Detección , Masculino , Metiltransferasas/genética , Polimorfismo de Nucleótido Simple
19.
J Appl Toxicol ; 36(2): 309-19, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26779593

RESUMEN

Fluoride is an important groundwater contaminant, and more than 200 million people are exposed to high fluoride levels in drinking water, the major source of fluoride exposure. Exposure above 2 ppm of fluoride is associated with renal impairment in humans. In rats, moderate levels of fluoride induce kidney injury at early stages in which the glomerular filtration rate (GFR) is not altered. In the present study, we investigated if sub-nephrotoxic stimulus induced by fluoride might impact the response to a subsequent nephrotoxic treatment with gentamicin. Male Wistar rats (~21 days) were exposed to 0, 15 or 50 ppm of fluoride through drinking water during 40 days. Afer that, rats were co-exposed to gentamicin (40 mg kg(-1) day(-1), 7 days). Gentamicin induced a marked decrease in the GFR and an increase in urinary levels as well as the protein and mRNA expression of biomarkers of early kidney injury, such as Kim-1. Interestingly, gentamicin nephrotoxicity was less pronounced in groups previously exposed to fluoride than in the group only treated with gentamicin. Fluoride induced Hsp72, a cytoprotective molecule, which might have improved the response against gentamicin. Moreover, fluoride decreased the expression of megalin, a molecule necessary for internalization of gentamicin into the proximal tubule, potentially reducing gentamicin accumulation. The present results suggest that fluoride reduced gentamicin-induced nephrotoxicity by inducing a compensatory response carried out by Hsp72 and by decreasing gentamicin accumulation. These findings should not be interpreted to suggest that fluoride is a protective agent as megalin deficiency could lead to serious adverse effects on the kidney physiology.


Asunto(s)
Fluoruros/toxicidad , Gentamicinas/toxicidad , Tasa de Filtración Glomerular/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Riñón/efectos de los fármacos , Insuficiencia Renal/inducido químicamente , Animales , Masculino , Ratas , Ratas Wistar
20.
Environ Health Perspect ; 124(1): 104-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26068977

RESUMEN

BACKGROUND: Exposure to arsenic (As) concentrations in drinking water > 150 µg/L has been associated with risk of diabetes and cardiovascular disease, but little is known about the effects of lower exposures. OBJECTIVE: This study aimed to examine whether moderate As exposure, or indicators of individual As metabolism at these levels of exposure, are associated with cardiometabolic risk. METHODS: We analyzed cross-sectional associations between arsenic exposure and multiple markers of cardiometabolic risk using drinking-water As measurements and urinary As species data obtained from 1,160 adults in Chihuahua, Mexico, who were recruited in 2008-2013. Fasting blood glucose and lipid levels, the results of an oral glucose tolerance test, and blood pressure were used to characterize cardiometabolic risk. Multivariable logistic, multinomial, and linear regression were used to assess associations between cardiometabolic outcomes and water As or the sum of inorganic and methylated As species in urine. RESULTS: After multivariable adjustment, concentrations in the second quartile of water As (25.5 to < 47.9 µg/L) and concentrations of total speciated urinary As (< 55.8 µg/L) below the median were significantly associated with elevated triglycerides, high total cholesterol, and diabetes. However, moderate water and urinary As levels were also positively associated with HDL cholesterol. Associations between arsenic exposure and both dysglycemia and triglyceridemia were higher among individuals with higher proportions of dimethylarsenic in urine. CONCLUSIONS: Moderate exposure to As may increase cardiometabolic risk, particularly in individuals with high proportions of urinary dimethylarsenic. In this cohort, As exposure was associated with several markers of increased cardiometabolic risk (diabetes, triglyceridemia, and cholesterolemia), but exposure was also associated with higher rather than lower HDL cholesterol. CITATION: Mendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M. 2016. Chronic exposure to arsenic and markers of cardiometabolic risk: a cross-sectional study in Chihuahua, Mexico. Environ Health Perspect 124:104-111; http://dx.doi.org/10.1289/ehp.1408742.


Asunto(s)
Arsénico/toxicidad , Enfermedades Cardiovasculares/sangre , Diabetes Mellitus/sangre , Adulto , Estudios Transversales , Femenino , Humanos , Modelos Lineales , Masculino , México , Persona de Mediana Edad , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...